Visual Information Fidelity (VIF)¶
Module Interface¶
- class torchmetrics.image.VisualInformationFidelity(sigma_n_sq=2.0, reduction='mean', **kwargs)[source]¶
Compute Pixel Based Visual Information Fidelity (VIF).
As input to
forward
andupdate
the metric accepts the following inputpreds
(Tensor
): Predictions from model of shape(N,C,H,W)
with H,W ≥ 41target
(Tensor
): Ground truth values of shape(N,C,H,W)
with H,W ≥ 41
As output of forward and compute the metric returns the following output
vif-p
(Tensor
):If
reduction='mean'
(default), returns a Tensor mean VIF score.If
reduction='none'
, returns a tensor of shape(N,)
with VIF values per sample.
- Parameters:
reduction¶ (
Literal
['mean'
,'none'
]) –The reduction method for aggregating scores.
'mean'
: return the average VIF across the batch.'none'
: return a VIF score for each sample in the batch.
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torch import randn >>> from torchmetrics.image import VisualInformationFidelity >>> preds = randn([32, 3, 41, 41]) >>> target = randn([32, 3, 41, 41]) >>> vif = VisualInformationFidelity(reduction='mean') >>> vif(preds, target) tensor(0.0032)
Functional Interface¶
- torchmetrics.functional.image.visual_information_fidelity(preds, target, sigma_n_sq=2.0)[source]¶
Compute Pixel Based Visual Information Fidelity (VIF).
- Parameters:
- Return type:
- Returns:
Tensor with vif-p score
- Raises:
ValueError – If predicted or ground truth image shape is not at least
(41, 41)